

Variability of Ice Supersaturation, Nucleation, and Cirrus in TTL Vertical Layers

<u>Joshua P. DiGangi</u>¹, Glenn S. Diskin¹, James Podolske², Mario Rana^{1,3}, Thomas Slate^{1,3}, T. Paul Bui², Sarah Woods⁴, Paul Lawson⁴, Troy Thornberry^{5,6}, Andrew Rollins^{5,6}, David Fahey⁵, and Eric Jensen²

¹NASA Langley Research Center, Hampton, VA, USA

²NASA Ames Research Center, Mountain View, CA, USA

³Science Systems and Applications Inc., Hampton, VA, USA

⁴SPEC Inc., Boulder, CO, USA

⁵NOAA Earth Systems Research Laboratory, Boulder, CO, USA

⁶Cooperative Institute for Research in Environmental Sciences, Boulder, CO, USA

- Jensen et al. (2013) reported dehydrated layers only meters thick
- Layers corresponded to high ice particle concentrations
- Later ATTREX campaigns give chance to examine how common these layers are in the TTL

NOAA H₂O (ppmv)

OLH - NOAA (%)

1000

100

10

40

20

-20

Diode Laser Hygrometer

- Participated in ATTREX 1, 2, & 3
- Open-path measurement
- 100 Hz sampling
- < 1 m vertical res.

Case Study: 16 February 2014

• Case Study: 09 March 2014

Thin Layer Distribution and Statistics

- Altitude and depth similar likely same feature
- Horizontal extent: ~ 20 km

Layer Distribution & Stats

• 0.5-3.5% cloud sampling, 18-26% of ice particles*

Layer Distribution & Stats

- Further evidence of thin dehydrated layers with large ice particle concentrations
 - Particle sizes typically < 10 μm in these layers
- Recent convection does not seem to play a role in layer frequency
- Layers existed for 0.5-3.5% of cloud sampling, but contributed 18-26% of ice particles
- Fast (sub 1 Hz) measurements of other tracers would help investigate layer airmass origin
- Future Work
 - Investigate convection tracers to further explore source
 - Explore influence of gravity waves
 - Examine statistics of layer vertical thickness
 - Repeat analysis with 2013 ATTREX deployment